

Published on Web 09/29/2009

Pd(II)-Catalyzed Hydroxylation of Arenes with 1 atm of O₂ or Air

Yang-Hui Zhang and Jin-Quan Yu*

Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037

Received August 26, 2009; E-mail: yu200@scripps.edu

Catalytic hydroxylation of inert C–H bonds using environmentally benign hydrogen peroxide or molecular oxygen remains a significant task in both chemical industry and organic synthesis.¹ Among various metal² and nonmetal^{3,4} catalytic systems, an early discovery by Fujiwara using Pd(OAc)₂ to convert benzene into phenol with molecular oxygen is especially intriguing⁵ but required harsh conditions and provided low yields (eq 1). In another pioneering study by Rybak-Akimova and Que,⁶ the carboxylic group of benzoic acid was used to direct *ortho*-hydroxylation with H₂O₂ in the presence of a stoichiometric amount of a reactive nonheme iron complex [Fe(II)(BPMEN)(CH₃CN)₂](ClO₄)₂ (eq 2).

Our group and others have also reported Pd-catalyzed C–H oxidation with various peroxides^{7a} and oxone^{7b,8} using Ac₂O as a crucial promoter. Recently, an important study by Vedernikov described a Pd(II)-catalyzed oxidation reaction of benzylic C–H bonds of 8-methylquinoline with molecular O₂ in the presence of HOAc/Ac₂O in which both hydroxylation and acetoxylation were observed.^{9a} However, this catalytic system is not compatible with aryl C–H bonds.^{9b} Herein we report highly selective Pd-catalyzed *ortho*-hydroxylation of potassium benzoates with 1 atm of O₂ or air giving synthetically useful yields under nonacidic conditions (eq 3). The use of 0.2–1 equiv of benzoquinone is found to significantly accelerate the reaction; however, it is not essential. Labeling studies using both ¹⁸O₂ and H₂¹⁸O support a direct oxygenation of the arylpalladium intermediates instead of an acetoxylation/hydrolysis sequence.¹⁰

The fundamental importance of hydroxylation with O_2 and its applications related to drug discovery and natural product synthesis based on salicylic acids prompted us to develop a Pd-catalyzed *ortho*-hydroxylation of benzoic acids with molecular O_2 (Figure 1). Guided by an early observation that alkali metal and other cations promote palladation of proximate C–H bonds,¹¹ we discovered through extensive screening that potassium salts such as KOAc or K₂HPO₄ promote Pd(II)-catalyzed *ortho*-hydroxylation of benzoic acids under 1 atm of O_2 in DMF, DMA, and DMP. Although only two turnovers were observed (entries 3–5), the yield

10 mol% Pd(OAc)₂

Figure 1. Examples of the top 200 drugs by retail dollars.

Table 1. Screening of Reaction Conditions

CO2H

	1 atm O ₂ , 115 °C, 15 h				
entry	solvent	base	BQ (equiv)	% yield ^a	% SM ^a
1	t-BuOH	KOAc (2 equiv)	0	0	100
2	THF	KOAc (2 equiv)	0	0	100
3	DMF	KOAc (2 equiv)	0	16	52
4	DMP	KOAc (2 equiv)	0	12	60
5	DMA	KOAc (2 equiv)	0	20	50
6	DMA	KOAc (2 equiv)	0	55^{b}	0
7	DMA	K_2 HPO ₄ (3 equiv)	0	60^{b}	0
8	DMA	KOAc (2 equiv)	0.2	40	60
9	DMA	KOAc (2 equiv)	1	82	12
10	DMA	NaOAc (2 equiv)	1	25	70
11	DMA	CsOAc (2 equiv)	1	80	16
12	DMA	K_2 HPO ₄ (3 equiv)	1	45	45
13	DMA	K_2CO_3 (3 equiv)	1	33	65
14	DMA	KOAc (2 equiv)	1	62^{c}	30
15	DMA	KOAc (2 equiv)	1	0^d	100

^{*a*} The yields were determined by ¹H NMR analysis of crude products using CH₂Br₂ as the internal standard; DMA, *N*,*N*-dimethylacetamide; DMP, *N*,*N*-dimethylpropionamide. ^{*b*} 5 atm of O₂. ^{*c*} Air instead of O₂. ^{*d*} Ar instead of O₂.

was increased to 55-60% by performing this hydroxylation reaction under 5 atm of O₂ (entries 6, 7). We also found that addition of 0.2 and 1 equiv of benzoquinone increases the yield to 40% and 82% respectively under 1 atm of O₂ (entries 8, 9). Among the bases screened, KOAc and CsOAc (entries 9, 11) are superior to NaOAc (entry 10); however, K₂HPO₄ is also compatible (entry 12). These combined data indicate that the acetate anion is not required. Monitoring the reaction by ¹H NMR shows that benzoquinone significantly increases the rate of the hydroxylation (see Supporting Information).¹² We were pleased to find that hydroxylation proceeds using 1 atm of air as the sole oxidant (entry 14). Notably, no reaction was observed using stoichiometric Pd(OAc)₂ under 1 atm of argon, suggesting that O₂ is likely to be involved in the product forming step rather than reoxidation of Pd(0) (entry 15).

With these optimized conditions in hand, we proceeded to establish the substrate scope. Electron-rich arenes are readily hydroxylated to give the anticipated products 1-9 in 60-82% yields. The hydroxylation product from 1-naphthoic acid was decarboxylated spontaneously to give 6. Surprisingly, the well-known directing group acetamide in 9 did not scramble the regioselectivity. Halides (10-13), as well as other stronger electron-withdrawing groups such as trifluoromethyl, acetyl, cyanide, and nitro (14-20), are reasonably well tolerated, giving

^a Isolated yield.

moderate yields. In these cases, 85-95% yields can be obtained by using 5 atm of O₂.

Preliminary mechanistic investigations were carried out to shed light onto this hydroxylation pathway. Our earlier studies on Pdcatalyzed C-H oxidation using peroxides^{7a} and O₂ as the oxygen source were initially inspired by seminal works regarding organometallic reactions of C-Pd bonds with peroxides13 and C-Pt bonds with O2.14,15 These oxidants are shown to oxidize C-Pt (Pd) bonds to form Pt(IV) and Pd(IV) species I and II or directly insert oxygen atoms into C-Pt(Pd) bonds to form III and IV.^{7a}

While no data are currently available to distinguish among these reaction pathways, labeling experiments were performed to rule out the involvement of carboxylation or lactonization intermediates V and VI (Figure 2). First, ¹⁸O₂ was incorporated into the products with high

fidelity (eq 4). Second, the decarboxylated product showed that ¹⁸O₂ is incorporated into the hydroxyl rather than the carboxyl group (eq 5). These observations are inconsistent with the carboxylation/ hydrolysis pathway from the catalytic amount of OAc⁻ or the benzoic acids. Finally, experiments using 2 equiv of H218O (eq 6) or H2O2 $(30\% \text{ in } H_2\text{O})$ (eq 7) also rule out oxygen incorporation from H₂O or H₂O₂ formed through a Pd(II)/Pd(0) catalysis.¹⁶

In summary, we have developed a versatile Pd-catalyzed orthohydroxylation of benzoic acids with 1 atm of O2 or air under nonacidic conditions. Mechanistic investigations point to a direct oxygenation of the aryl-Pd species by molecular O₂.

Acknowledgment. We gratefully acknowledge the U.S. National Science Foundation (NSF CHE-0910014) for financial support, Amgen and Lilly for financial support, and A. P. Sloan Foundation for a Fellowship (J.-Q.Y.).

Supporting Information Available: Experimental procedure and characterization of all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) (a) Shilov, A. E.; Shul'pin, G. B. Chem. Rev. 1997, 97, 2879. (b) Baik, M.-H.; Newcomb, M.; Friesner, R. A.; Lippard, S. J. Chem. Rev. 2003, 103, 2385. (c) Lucke, B.; Narayana, K. V.; Martin, A.; Jahnisch, K. Adu, Synth. Catal. 2004, 346, 1407. (d) Que, L.; Tolman, W. B. Nature 2008, 455, 333. (e) Hartwig, J. F. Nature 2008, 455, 314.
 (a) Groves, J. T.; Viski, P. J. Am. Chem. Soc. 1989, 111, 8537. (b) Grinstaff, August 2014, 2014
- (2) (a) Gives, J. T., Viski, J. A., Grav, H. B. Science 1994, 264, 1311.
 (c) Larrow, J. F.; Jacobsen, E. N. J. Am. Chem. Soc. 1994, 116, 12129. (d) Breslow, R.; Zhang, X. J.; Huang, Y. J. Am. Chem. Soc. 1997, 119, 4535.
 (e) Punniyamurthy, T.; Miyafuji, A.; Katsuki, T. Tetrahedron Lett. 1998, 39, 8295. (f) Periana, R. A.; Taube, D. J.; Gamble, S.; Taube, H.; Satoh, T.; Fujii, H. Science **1998**, 280, 560. (g) Lee, S.; Fuchs, P. L. J. Am. Chem. Soc. 2002, 124, 13978. (h) Das, S.; Incarvito, C. D.; Crabtree, R. H.;
 Brudvig, G. W. Science 2006, 312, 1941. (i) Chen, M. S.; White, M. C.
 Science 2007, 318, 783. (j) Company, A.; Gomez, L.; Guell, M.; Ribas, X.; Luis, J. M.; Que, L.; Costas, M. J. Am. Chem. Soc. 2007, 129, 15766.
 (k) Herres-Pawlis, S.; Verma, P.; Haase, R.; Kang, P.; Lyons, C. T.; Wasinger, E. C.; Florke, U.; Henkel, G.; Stack, T. D. P. J. Am. Chem. Soc. 2009, 131, 1154.
- For dioxirane and radicals, see: (a) Yang, D.; Wong, M. K.; Wang, X. C.; Tang, Y. C. J. Am. Chem. Soc. **1998**, 120, 6611. (b) Curci, R.; D'Accolti, L.; Fusco, C. Acc. Chem. Res. **2005**, 39, 1. (c) Baran, P. S.; Chen, K. Nature (3)2009, 459, 824. (d) Kasuya, S.; Kamijo, S.; Inoue, M. Org. Lett. 2009, 11, 3630
- (4) For a single example of oxaziridine catalysts, see: Litvinas, N. D.; Brodsky, B. H.; Du Bois, J. Angew. Chem., Int. Ed. 2009, 48, 4513.
- (5)Jintoku, T.; Nishimura, K.; Takaki, K.; Fujiwara, Y. Chem. Lett. 1990, 1687 (For corrected yields see: Chem. Lett. 1991, 193)
- Taktak, S.; Flook, M.; Foxman, B. M.; Que, L.; Rybak-Akimova, E. V.; Akimova, R. Chem. Commun. 2005, 5301. (6)
- (a) Giri, R.; Liang, J.; Lei, J. G.; Li, J. J.; Wang, D. H.; Chen, X.; Naggar, (7)I. C.; Guo, C. Y.; Foxman, B. M.; Yu, J. Q. Angew. Chem., Int. Ed. 2005, 44, 7420. (b) Desai, L. V.; Malik, H. A.; Sanford, M. S. Org. Lett. 2006, 8, 1141.
- (8), Firth.
 (8) For the use of PhI(OAc)₂, see: Desai, L. V.; Hull, K. L.; Sanford, M. S. *J. Am. Chem. Soc.* 2004, *126*, 9542.
 (9) (a) Zhang, J.; Khaskin, E.; Anderson, N. P.; Zavalij, P. Y.; Vedernikov, A. N. *Chem. Commun.* 2008, 3625. (b) Vedernikov, A. N. *Chem. Commun.* 2008, 3625. 2009, 4781.
- (10) For a Cu-catalyzed hydroxylation via acetoxylation/hydrolysis: Chen, X.; Hao, X. S.; Goodhue, C. E.; Yu, J. Q. J. Am. Chem. Soc. 2006, 128, 6790. Giri, R.; Yu, J. Q. J. Am. Chem. Soc. 2008, 130, 14082.
- (12) For recent dicussions on various roles of benzoquninone on C-H function-For feech dictastories of various fores of benzoquinnoine of C-H rulendi-alizations, see: (a) Boele, M. D. K.; van Strijdonck, G. P. F.; de Vries, A. H. M.; Kamer, P. C. J.; de Vries, J. G.; van Leeuwen, P. W. N. M. J. Am. Chem. Soc. 2002, 124, 1586. (b) Chen, M. S.; Prabagaran, N.; Labenz, N. A.; White, M. C. J. Am. Chem. Soc. 2005, 127, 6970. (c) Chen, X.; Li, J. J.; Hao, X. S.; Goodhue, C. E.; Yu, J. Q. J. Am. Chem. Soc. 2006, 128, 78. (d) Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 9651.
- (13) (a) Alsters, P. L.; Boersma, J.; Vankoten, G. Organometallics 1993, 12,
- (1) (a) Alsters, P. L., Borshid, S., Valkoch, G. Organometalics 1973, 12, 1629. (b) Alsters, P. L.; Teunissen, H. T.; Boersma, J.; Spek, A. L.; Vankoten, G. Organometallics 1993, 12, 4691.
 (14) (a) Rostovtsev, V. V.; Henling, L. M.; Labinger, J. A.; Bercaw, J. E. Inorg. Chem. 2002, 41, 3608. (b) Vedernikov, A. N.; Binfield, S. A.; Zavalij, P. Y.; Khusnutdinova, J. R. J. Am. Chem. Soc. 2006, 128, 82.
- (15) (a) Grice, K. A.; Goldberg, K. I. Organometallics 2009, 28, 953. (b) Taylor, (a) Check, III. Soundey, G. J.; White, A. J. P.; Britovsek, G. J. P. Angew. Chem., Int. Ed. 2009, 48, 5900.
- (16) (a) Konnick, M. M.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 5753. (b) Piera, J.; Backvall, J.-E. Angew. Chem., Int. Ed. 2008, 47, 2.

JA907198N